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Abstract

In this paper, I present the results of applying the Näıve Bayes algorithm to
the problem of filtering unwanted junk or “spam” e-mail. I explore the effect
of several parameters including corpus size and feature extraction methods. I
compare my results to several published statistical spam-filtering approaches.



1 Introduction

Spam, also known as “unsolicited commercial e-mail” or “junk e-mail,” pollutes
the once serene medium of electronic mail. Left unfiltered, recipients of spam
must waste time deleting annoying and possibly offensive messages. When a
user is inundated with a large amount of spam, the chance of overlooking a
legitimate message increases. Spam also creates a burden on mail servers and
Internet traffic, all for unwanted messages. Spam accounted for over half of the
mail I received this year.

Researchers have examined several different approaches to spam filtering,
many of which are widely deployed. One broad approach attacks spam at the
network level. For instance, some servers block spam based on so-called Real-
time Black Hole lists, which alert servers of undergoing spam flurries. Hall has
achieved decent results with a similar approach.[11] Another broad approach
examines the content of an incoming message for features which indicate its
status as spam or legitimate. Deployed at the user level, this approach can
incorporate facts about each user’s legitimate mail.

Taking the latter approach and treating e-mail filtering as a text classification
problem, researchers have applied several statistical learning algorithms to e-
mail corpora with promising results. (Including problems more difficult than
spam filtering, such as author identification.[4]) However, their tokenization and
feature extraction methods produce truncated feature lists and don’t take into
account many pieces of potentially helpful information. In this paper I examine
the performance of a Näıve Bayes classifier using varied approaches to feature
extraction and tokenization as well as different corpus sizes. I also compare my
results with those produced by a popular ad hoc filtering program.

The paper is organized as follows. In Section 2, I briefly review the published
spam filtering results. In Section 3, I present the Näıve Bayesian classifier in
the variants I use for my experiments, providing arguments for several of the
design decisions. In Section 4 I describe the corpus of my e-mail. In Section
5, I present the tokenization schemes I use for feature extraction. In Section
6, I present the experimental results of my classifier’s performance on a month
of my mail, using both a large and a small training corpus. Section 7 presents
possible future work.

2 Related Work

Computerized text classification problems and solutions date back to the early
1960s when Näıve Bayes was first used in this domain.[14] To apply statistical
learning methods to text classification problems, algorithms break documents
into sets of features. Typically most of these features are tokens – usually words
in the traditional sense. Additional features such as the author’s name, the
document’s creation date, or the document’s length, are sometimes collected.

In contrast to many statistical learning problems, classification of natural
language texts is not well defined in several respects. First, there isn’t always
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a clear way to determine what to count as a feature. For instance, in some
cases punctuation and capitalization carry significant information while in other
cases they merely clutter the vocabulary. Second, the vocabulary is not fixed.
Documents under consideration may have tokens (such as misspellings, unusual,
and new words) which were not present in the training data. Furthermore,
documents are usually sparse, containing far fewer vocabulary words than they
leave out. Obtaining enough training data to calculate reasonable probabilities
of infrequent words is impractical at best. Third, while documents are usually
rich in semantic information, extracting it is not easy.[12]

Researchers have applied a variety of statistical learning methods to the
problem of classifying e-mail as legitimate or junk. In an early attempt, Sahami,
Dumais, Heckerman, and Horvitz[19] applied the Näıve Bayes approach to the
problem. Using a corpus with far more junk than legitimate mail, their best
binary-classifier legitimate precision and recall figures (87.8% and 94.7%) came
by considering as features the 500 words with highest mutual information along
with 35 hand-crafted features. Multiple occurrences of a single feature in a given
message were ignored. They looked for word tokens only in the subject heading
and the message body. They achieved better legitimate-class results (96.2%
precision and 100% recall) by splitting the classifier three ways and splitting
the junk messages into two separate classes, though the junk subclassification
was rather poor.

Androutsopoulos et al.[1] produced a widely-used public spam corpus, com-
posed of 2412 legitimate messages from a linguistics mailing list and 481 spam
messages received by Androutsopoulos. Their best results were 99.47% spam
precision and 78.41% precision, achieved with stemming and a stop list and cost
function λ = 9. However, all tokenization schemes with cost λ = 9 (including
neither stemming nor stop lists) produce similar results.

Drucker, Wu and Vapnik[7] approached the spam filtering problem with the
support vector machine technique. They extracted words from the subject and
body from a corpus of messages from different message recipients. Stemming was
applied to the words, collapsing words with the same root to a single token. Two
vocabulary lists were then generated, with and without a stoplist, before being
pared down to the 1000 best words. Their best results came when considering
words from both the subject and the body without a stoplist. Their legitimate
recall for this case was 100% recall and the precision was 95.3%.

Katirai[13] compared the performance of genetic programming and Näıve
Bayes classifiers in the spam filtering domain. The training set for this exper-
iment had seven times as many junk messages after removing duplicate spam.
The corpus was tokenized into words, applying both stemming and a stop list.
The best results showed genetic programming with junk precision of 95.45% and
recall of 70% while Näıve Bayes stood at 95.83% precision and 76.67% recall.
Katirai also noted that if certain regular punctuation sequences (such as signa-
tures and boundaries of forwarded messages) are removed, repeated punctuation
is an information-rich feature.

Diao, Lu, and Wu[6] compared the Näıve Bayes approach to a decision tree
classifier in the e-mail classification domain. Their goal was a little more broad
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than simple spam filtering; they classified messages as either “interesting” or
“not interesting.” The latter class included both typical spam and otherwise le-
gitimate messages which the user didn’t care for. Furthermore, they combined
such classified messages from several different users. This pair of approaches
isn’t very practical, since one message may be very interesting to one user and
entirely uninteresting to another. They varied the inclusion of textual features
(stemmed and stop-listed alphabetic strings), structured features (header in-
formation such as the sender’s domain or the presence of attachments), and
several handcrafted features, such as the number of exclamation points. The
best results for both decision trees and Näıve Bayes were obtained by using both
header and body features.

Carerras and Màrquez[2] compared the performance of the AdaBoost al-
gorithm on LingSpam to previously-reported results on LingSpam for Näıve
Bayes, k-Nearest Neighbor, Decision Trees, and Stacking. Using cost-sensitive
classification, the best junk precision/recall results are as follows: Naive Bayes:
99.45/77.57%; K-Nearest Neighbor: 98.8/81.9%; Stacking: 98.8/84.8%; Deci-
sion Trees (not cost-sensitive and on a different corpus): 88.71/89.81%; and
AdaBoost: 99.35/94.8% (or 100/81.91% with a higher cost function). The fea-
tures were not stemmed or stoplisted, and presumably were taken just from the
body and with a binary feature model.

Sakkis et al.[20] experimented with several parameters for a K-Nearest Neigh-
bor classifier on LingSpam. Their best results were 99.45% spam precision and
67.57% spam recall. They also found that increased training corpus size and
increased dimensionality improved the performance of the classifier.

Gee[8] compard Latent Semantic Indexing to a previously published Näıve
Bayes result on the LingSpam corpus. The best Latent Semantic Indexing
results (which actually came from two separate configurations) were 99.88%
legitimate precision and 99.79% legitimate recall. This compares favorably with
the Naive Bayes results of 100% and 98.3%, respectively.

O’Brien and Vogel[18] compare Naive Bayes to the “Chi by degrees of Free-
dom” approach. The latter is often used in author detection, and is used under
supicion that most spam is sent by a small number of prolific profiteers. They
also compared the effectiveness of both classifiers working on words or charac-
ters as features. Naive Bayes with words produced spam precision of 100% and
recall of 76.9%, while operating on characters produced 100% in both categories
(on a test corpus of less than 70 messages). The Chi approach produced 100%
precision and recall when operating on words and 97.5% precision/100% recall
working with characters.

Manco, Masciari, Ruffolo, and Tagarelli[15] developed a system to classify
incoming messages as “interesting” and “important” (or neither) in an unsu-
pervised manner. Features were stemmed and stoplisted words from the body
and several header-based features like sender domain. The best results for this
K-Means algorithm presented in this case has recall of 90.59% and precision of
73.48%. While these results are significantly worse than those listed above for
spam, the problem is more difficult and the classes more similar.

Graham posted an influential article on the web[9] presenting results of 0
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false positives (updated later to four out of several thousand messages) and
false negative rates near 1/1000. In his updated version,[10] he advocates using
all header information, considering trailing punctuation part of the attached
tokens, and adjusting for case only when exact case matching fails. His ap-
proach offers several advantages over those mentioned above. First, very little
information is discarded. When classifying, he only considers tokens which have
been seen at least a few times before, but his vocabulary can grow dynamically
and indefinitely. While some features will be examined infrequently, when they
are used, they are often highly indicative of one class or another. Furthermore,
using full header information can expose features automatically created in the
process of e-mail sending; this information is difficult to spoof. Finally, his
corpus is just the set of messages he received over an extended period. This
makes the classification task more realistic (users typically receive messages on
a wide variety of topics) and allows specific header information to be used (since
information like the receiving host will be normalized).

3 Approach

While several algorithms mentioned in Section 2 outperform it, Näıve Bayes
has several advantageous properties. First, a classifier is constructed by a sin-
gle sweep across the training data and classification requires just a single table
lookup per token, plus a final product or sum over each token. Other approaches
like Support Vector Machines, Boosting, and Genetic Algorithms require iter-
ated evaluation; approaches like k-means require several pairwise message com-
parisons while decision tree building is significantly slower than Bayesian table
construction. The quick training and classification times of Näıve Bayes allowed
several variants to be tested. Furthermore, since Näıve Bayes need only store
token counts, rather than whole messages, storage requirements are small, the
classifier can be updated incrementally as individual messages are classified, and
classification data can be shared between users without (much) loss of privacy.

I implemented four variants of the Näıve Bayes text classification algorithm.
Each makes the independence assumption that the probability of tokens oc-
curring in a message is independent, since the exact probability of a message’s
occurrence is very difficult to compute. In practice, this assumption does not
hold, but history is replete with successful examples.[14] In all four variants I
also ignore the prior probabilities of the two categories. Spam accounts for a
little more than half of my mail, so the prior probabilities would thus be close
to 0.5 and cancel each other out. Incorporating a high prior spam probability
would also be undesirable: misclassified legitimate mail is much worse than mis-
classified spam and the chance that a user will notice a misfiled message shrinks
as the volume of spam grows.

The first variant follows [17]. The message is classified with the label lbl
which maximizes the product of P (ai|lbl) as i ranges over all tokens where

P (t|lbl) =
tlbl + 1

nlbl + |V ocabulary|
,
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tlbl is the number of occurences of token t in messages with label lbl, nlbl is
the total number of token occurences in messages labeled lbl and |V ocabulary|
is the number of unique tokens across all messages. This variant counts each
occurrence of a token separately. A slight variation on this algorithm collapses
multiple token occurrences; a repeated token is only included once in the prod-
uct; tlbl is the number of lbl labeled files containing t and nlbl is the number
of files labled lbl. To prevent machine underflow, the final multiplication is
replaced by a sum of logs; this conversion maintains ordering.

The other two variants are based on Paul Graham’s popular implementation
[9] and [10]. This implementation takes advantage of the Binary Independence
Model[14] and merely calculating the probability that the message is spam and
classifying it as such if that probability is greater than 0.5. The second major
difference in Graham’s approach is to only use the probabilities from the “most
interesting” tokens – those for which the probability of spam is furthest from
0.5. In this implementation,

P (spam|t) =
tspam/nspam
tspam

nspam
+ tlegit

nlegit

where tlbl is again the number of appearances of token t in messages labled lbl,
nlbl is the total number of tokens in lbl messages. In cases where t only appears
in one class of messages (and hence produce a 0 probability for the other), the
probability from that token is estimated to be 0.01/(nlbl/10 + 1) (or one minus
that quantity, as appropriate). As before, I also tested a variant where multiple
occurrences of a single token in a message are ignored.

Note that Graham’s approach calculates a different quantity than the stan-
dard Näıve Bayesian algorithm.

tspam/nspam
tspam

nspam
+ tlegit

nlegit

is P (spam|t) — the probability that a message is spam given that it includes a
particular token. It then multiplies a subset (in my case, 20) of those probabili-
ties to estimate P (spam|message). If all tokens in the message were multiplied
together a very long message with lots of spam-indicative tokens would be clas-
sified as legitimate, since the fractional multiplications would bring the product
below 0.5. The traditional algorithm, on the other hand, calculates P (t|class)
– the probability that token t will occur in a message of type class. All of these
probabilities are then multiplied. There is no need to ignore neutral tokens, as
their multiplicative effect is equal on both classes.

In all cases, I ignored all tokens which appeared in only one file; such tokens
are often randomly-generated or time-stamped unique identifiers.

4 Corpus

E-mail messages are semi-structured text documents. Plain messages have a
header section and a body section. The header contains several optional and
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required fields, some of which follow set formats (like the Date and Received
fields) while others (like the Subject and X-Mailer field) can contain almost
any text. The body is essentially unrestricted in its content. Using the MIME
protocol, several parts or “attachments” can be included in a single body. This
allows messages to include encoded multimedia, or alternative textual presen-
tations like HTML. Each MIME part includes a header describing the type
content, encoding method, and so forth.

The corpus for this experiment consisted of 13911 messages I received in
the thirteen months from October, 2002, to October, 2003. 6891 (49.6%) were
hand-classified as legitimate, 7020 were spam. The data may be noisy; during
development I detected a few misclassified messages in the test set (which were
subsequently reclassified). This underscores the importance of a filtering method
robust to misclassifications and noise.

This is not all of the mail I received in that period – several mailing lists
were automatically filed into their own folders and not included in the corpus
(though some low-volume or important mailing lists arrive in my inbox and
hence were included). Filtering mailing list traffic is a slightly different problem
which has some different solutions available (such as moderating messages sent
to the list).

I considered as spam all unsolicited mail sent without regards to my identity.
Some unwanted commercial email was classified as legitimate. For instance, I
considered solicited any mail resulting from signing up for services or purchasing
products over the World Wide Web. In my experience such companies usually
honor requests to be removed from their mailing lists, and the messages oc-
casionally contain material of interest. I also considered legitimate unsolicited
commercial messages which indicated that the sender knew something interest-
ing about me, such as my city of residence, group membership, first name, or
semantic website content. While such messages are often unwanted, I’m more
likely to be interested in them and I think I ought to respond to personal effort
with at least a personal glance at the subject. Such messages tend to be few,
since they require human effort, and are less likely to be fraudulent than typical
spam. For this purpose, I don’t consider machine-determined information like
my username or website URL to be interesting information about me.

I pre-processed the messages in several ways.

• I receive e-mail sent to several addresses, some of which have skewed per-
centages of spam or legitimate mail. For this experiment, I replaced all
occurrences of these addresses (in either the header or body) with a single
address. In practice, using unique e-mail addresses for different correspon-
dents (such as signing up for an online service) can be detected with simple
hand-crafted rules to automatically file mail without applying a statisti-
cal filter. On the flip side, a filter which can extract the few legitimate
messages out of the sea of spam sent to an address used to, say, post to
Usenet would be quite useful.

• My mail server runs a virus checker. While e-mail viruses and spam share
many features in common, filtering viruses is a separate (easier) problem
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from filtering spam. All virus-laden emails were kept out of the corpus
(save an overlooked one or two). Also kept out were mistaken warning
messages claiming I sent a virus when it was just someone using my address
in the From: header. Messages were also cleaned of the header indicating
the messages were virus-free.

• My mail server also runs SpamAssassin[5], which tags suspicious incom-
ing messages with a spam label and diagnostic information indicating
which spam-indicating rules the message met. All of this information was
scrubbed from messages in the corpus, but SpamAssassin’s classifications
were noted and used for comparison in Section 6.

• I removed annotations made by my email client, such as a Replied: header
which includes the time I replied to a message. Such information would
obviously not be available in incoming mail.

• MIME Attachments that could be identified as text (including those listed
with a content-type of application/octet-stream) were retained, con-
verting them from an encoded form like base64 if necessary. Non-text
attachments like images and application-specific data files, were removed.
All MIME header information, such as the attachment’s content-type and
file name, was retained as text.

• Finally, headers incurred by collecting the data, such as Received: head-
ers indicating the path from a mail server where I forward my mail to
another, were removed.

The corpus was organized into three groups. All messages received in Oc-
tober, 2003 (1200 spam and 809 legitimate) were used as a test set. This set
was tested with two different training sets, one with mail from October, 2002,
through August, 2003, and another with only mail from September, 2003. The
former contains 5194 legitimate and 5011 spam messages, the latter 889 legiti-
mate and 809 spam. I split the training sets in this way to examine the effect
of corpus size. A new filter user is unlikely to have a year-long backlog of spam
and non-spam e-mail to seed a filter. Thus, ideally a small training time could
produce a highly effective classifier. Strong performance by the latter train-
ing set may also be attributable to recency effects. Many e-mails are sent as
responses to previous messages (of my 6984 legitimate messages, 1164 had an
In-Reply-To: header) and often include quoted portions of previous messages
in the “conversation.” Subsequent messages may thus be easily detected by the
sender’s names and e-mail addresses or quoted terms. Thus, a recent training
set will likely perform better than an older set of equal size.

5 Tokens

As I indicated in Section 2, most published spam filtering systems break mes-
sages into features in fairly simple ways. Notably, little header information
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beyond the subject is examined in most research systems. Fields such as From:
can be information-rich, picking out the addresses of legitimate correspondents
while fields like To: can help identify spam; I receive a lot of spam which is
also addressed to people on the same system with alphabetically adjacent user-
names. It’s also possible that other headers contain valuable information; spam
and legitimate messages might typically be sent at different times or from dif-
ferent time zones. To determine how helpful different parts of the message are, I
created four training sets from the corpora. One set (labeled “body”) tokenized
just the body. Another set (labeled “rawhead”) used just the header potion
and treated it like body text. A third set (“combined”) combined the first two,
treating the entire message as a string of tokens. The fourth set (“head”) used
the structured nature of the headers. It treats as a feature each field/token
pair. Thus, in the fourth set, the token “Mary” in the To: field is treated sepa-
rately from the token “Mary” in the From: field. Unlike some of the researchers
mentioned in Section 2, I didn’t make any use of deeper semantic information
contained in the headers just field/token combinations. A production system
might find extra semantics (such as the range of time during which the message
was sent) a useful optimization.

Most researchers provide little justification for their tokenization technique,
which is usually alphabetic words in the subject and body, often stemmed or
filtered with a stop list. As people have deployed filters, spammers have de-
veloped unusual ways of conveying their information. For instance, sexual pill
spams have included the strings Vviagra, Via.gra, V1agra, and V|agra in the
subject line. While these can get past simple hand-made rules, proper tokeniza-
tion will recognize them all. V1agra, for instance, occurred 7 times, all spam.
A tokenizer which recognized via.gra as a single token might outperform one
which split it into tokens via and gra. Alternatively, it might not; my 11-month
training corpus has 1 legitimate and 119 spam occurrences of Via, 1 legit and
164 spam of gra while via occurred 609 times in legitimate mail and 223 times
in spam.

Punctuation alone may be elucidating. Say and Akman illustrate several
beneficial uses of punctuation in computational linguistics in [21] and [22]. Sev-
eral researchers mentioned in Section 2 have treated excessive exclamation marks
as a feature. My 11-month corpus had 63 spam messages and 121 legitimate
messages with the string !!! while it had 151 spams and 37 legitimate messages
with !!!</ (something exciting at the end of an HTML tag). The amount of
whitespace may even prove interesting. 61 spam and 30 legit messages followed
!!! with one space while the ratio was 8/26 for !!! followed by two spaces.

To explore these issues, I tested a variety of tokenizers, each in both an
“ignore case” and a “retain capitalization” mode. The most simple (labeled
“character”) merely treated each character as a separate token. ! was nearly
four times more common in spam than legitimate email while , was almost twice
as common in legitimate mail as spam. Since many characters appear in almost
each message, I also implemented a tokenizer (“twochar”) which treated each
character pair as a token. zx occurred in 15 times as many spams as legitimate
messages while LJ was in five times as many legitimate messages as spam.
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Another tokenizer I used (“alphanumeric”) was fairly typical, treating all
strings of consecutive alphanumeric characters tokens and ignoring all other
strings. Any non-alphanumeric character (rather than just whitespace) was
used as a token separator, so this method picks up portions of hostnames (com
appears in almost all spam messages) or URLs (cgi is five times more common in
spam). Some production systems have ignored strings of all numbers, I included
them. 000099 (an HTML code producing blue text) had a 203/6 spam/legit
ratio while 001 (indicative of course numbers, for instance) had a 78/233 ratio
and 0700 (my time zone) is nearly twice as common in legitimate mail.

To examine what can be gleaned from punctuation, I also implemented a
tokenizer (“alphanumpunc”) which treated all alphanumeric strings as tokens
and all non-alphanumeric strings as tokens. This tokenizer could probably be
improved, as it treats, for instance, 10 spaces as a separate token (with a 265/138
spam/legit ratio) than 10 spaces followed by a carriage return (a 4/0 ratio).
However, despite its high incidence of infrequent tokens, it picks out a host
of features with high information content. ... separating two alphanumeric
strings occurs with a 344/929 ratio while ... followed by two spaces has a 1/78
ratio.

The final token scheme (“basic”) combined punctuation and alphanumeric
characters. In this case, token boundaries were whitespace with optional ad-
jacent non-alphanumeric characters; the characters @, =, <, >, " with optional
adjacent non-alphanumerics; and any number of / characters preceded by an
optional :. In most normal cases, this tokenizer behaves much like the al-
phanumeric classifier — words are tokenized as such, since leading and trailing
punctuation is usually whitespace adjacent, and so gets ignored. Unlike the sim-
ple alphanumeric tokenizer, however, this tokenizer picks up on whole domain
names and prices (rather than segments), hyphenated words (especially com-
mon in headers such as Content-Type, which is twice as likely in spam), and
words like “don’t”. This tokenizer also has room for improvement; one common
spam technique is to insert html comments with random strings to break up
tokens, e.g.

Fo<!--ek76d92dg24j-->r th<!--via2d38nm5z-->e fir<!--645zpu3ltznh13-->st

tim<!--azwjt21617-->e ev<!--5x5cbphzdv3-->er

This tokenizer doesn’t isolate !-- as a separate token (occurring 13 times more
often in spam messages).

6 Results

In this section, I present the results of two sets of tests. One set used a small
training set built from messages received in September, 2003. The other set
used a training set from messages dating from October, 2002 to August, 2003.
The test set in both cases was messages received in October, 2003.

Several important numbers are reported in the results. The most important
number is false positives — that is, legitimate messages classified as spam. The
cost of an individual false positive varies, since some messages are less interesting
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than others. However, a missed e-mail can potentially cause a user material loss
or emotional grief. It is therefore imperative for the number of false positives
to be as low as possible, ideally 0. The converse problem, false negatives, are
much more benign. When a user receives a false negative, he just needs to
mark it as spam so the system will better recognize its ilk and then delete the
message. Most if not all users would rather receive several pieces of spam than
lose one legitimate message. The rates of false positives and negatives are also
reflected in the precision and recall values. Precision (based on false negatives)
is the percentage of messages classified as legitimate which truly legitimate.
Recall (based on false positives) is the percentage of truly legitimate messages
classified as such. Note that below I always present precision and recall figures
for legitimate messages, even though a “yes” classification denotes spam.

6.1 Small Training Set

Using a training set built from messages received in September 2003 I applied
to the October 2003 test set all combinations of algorithm variant, token type,
message portion, and case sensitivity. Table 1 shows a ranked sample of the com-
binatorial results. The table includes all combinations resulting in fewer than
3 false positives as well as the best-performing combination for each variable
instance.

Table 1 shows several interesting results. First, all good approaches I tried
outperformed the precision of SpamAssassin by at least 19% and no classifier
had worse precision. This may indicate that personalized filters are a big win or
that SpamAssassin would benefit from more token knowledge. (One of Spam-
Assassin’s “rules” is a Näıve Bayes algorithm, but it obviously doesn’t have the
benefit of the user’s legitimate corpus.)

Second, all of the classifiers with two or fewer false positives used the “com-
bined” (body + head as unstructured text) portion. This isn’t surprising, since
that has the most information available to it. Several classifiers that looked only
at the body had 5 or fewer false positives while 11 classifiers using just struc-
tured headers had fewer than 20 false positives, but only one rawhead classifier
had fewer than 20. On the other hand, the best false negative rates were pro-
duced by looking just at the headers, with both structured and raw classifiers
consistently missing just 20–40 spam. This indicates that combining the un-
structured body with structured headers may produce a classifier with minimal
false positives and very low false negatives.

One notable absence from the table above is character-based tokens. The
best performance from character bigrams resulted in 19 false positives while
the best classifier using single characters as tokens weighed in with 44 false
positives. These results are somewhat surprising, since one might intuitively
expect filtering based on character counts to perform little better than chance.
While these results are clearly insufficient to be used as the sole basis for a filter,
they may still prove useful as a component in a filter. Character bigrams might,
for instance, be collected from many users and used to form initial training sets
for new filter users. This would maintain user privacy while making it somewhat
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Table 1: Performance on the small training set

alg token portion case falsep falsen prec recall
pgt anp com yes 0 62 92.9% 100%
pgf anp com yes 0 68 92.2% 100%
pgt anum com yes 0 68 92.2% 100%
pgf anum com yes 0 71 91.9% 100%
pgt anum com no 0 128 86.3% 100%
pgf basic com yes 1 69 92.1% 99.9%
pgf anp com no 1 71 91.9% 99.9%
pgf basic com no 1 81 90.9% 99.9%
pgf anum com no 1 89 90.8% 99.9%
pgt basic com no 1 125 90.9% 99.9%
pgt basic com yes 2 75 91.5% 99.8%
pgt anp com no 2 99 89.1% 99.8%
sa - - - 2 339 70.4% 99.8%
pgf basic body yes 3 94 89.6% 99.6%
mlf anum com no 5 64 92.6% 99.4%
pgt anp head no 11 44 94.8% 98.6%
mlf basic rawhead no 16 39 95.3% 98.0%
mlf twochar head yes 19 55 93.5% 97.7%
mlt basic com yes 21 47 94.3% 97.4%
pgt char head yes 44 29 98.7% 94.6%

Symbol explanations:

alg = algorithm variant:

pgt = Graham-based with integer features

pgf = Graham-based with binary features

mlt = standard with integer features

mlf = standard with binary features

sa = SpamAssassin

token = tokenization method:

anp = alphanumpunc

anum = alphanumeric

char = character

portion = portion of the message used for features:

com = combined

case = does different capitalization mean different tokens?

falsep = number of false positives

falsen = number of false negatives

prec = legit precision

recall = legit recall
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difficult for spammers to insert known legitimate tokens.
All three word-based tokenizers perform competitively, since they share

many tokens. However, the two that use punctuation in tokens give slightly
better precision. This indicates that production filters should consider exam-
ining punctuation for interesting tokens. This might even be a good place to
employ character or character bigram counts. Also note that most classifiers did
approximately as well using and ignoring case. This indicates that capitaliza-
tion information typically doesn’t buy much, but again can shave a few errors
down. Graham [10] suggests first checking a token with capitals included and,
if that doesn’t match an existing token, convert it to lower case and use that as
the token.

Finally, Graham’s algorithm [9], which examines only the most informative
tokens, is shown to be a big winner over the traditional approach which mul-
tiplies probabilities of all tokens together. This is likely due to the presence of
many tokens which are each slightly more likely in spam which, when multiplied
together, outweigh single damning tokens. This is supported by the observation
that the keeping the top classifier constant, save changing the algorithm to the
standard, the token version reports 30 false positives while the one-token-per-
file approach produces only 9. Binary- and integer-token count versions of Paul
Graham’s algorithm typically produce similar results with the former typically
correctly classifying a few more messages. The counterexample to all of this is,
of course, the character-based tokenizers. Binary-token counts are often insuf-
ficient for the character token case, since most emails contain at least one copy
of most characters. The traditional “multiply everything” approach also serves
the character and twochar cases well, since 20 tokens pales in comparison to the
average 4800 characters per message.

The algorithms do have some room for parameter adjustment. The threshold
in Paul Graham’s can be set arbitrarily. I set it at .5, but a most of the false
positives in the top classifiers could be saved by raising the threshold to .6.

6.2 Large Training Set

Again, I present the top-performing classifiers in Table 2.
This table presents some interesting results. Compared to the small training

set, the large set produced a few more classifiers with two or fewer false positives.
(Not shown above are 11 classifiers with two false positives.) Several of the
classifiers with one false positive failed on a particular message, sent via text
messaging from Japan (a country from which I’d previously received mostly
spam). This message contained two previously-seen all-caps words and was a
reply to a message I sent, though I hadn’t yet received any messages from this
user at this address. It could, however, be caught by keeping track of addresses
to which I’d sent e-mail and allowing responses to those. Other 1-miss classifiers
tripped up on a message that looks a lot like spam. Not only does it advertise
via bulk email, it’s commercial (it’s a message to college football ticket holders
informing them of college basketball ticket prices), and it is full of HTML and
JavaScript code.
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Table 2: Performance on the large training set

alg token portion case falsep falsen prec recall
pgf basic com no 0 120 87.1% 100%
pgt anp com yes 1 82 90.8% 99.9%
mlf anum com yes 1 96 89.3% 99.9%
mlf anum com no 1 111 87.9% 99.9%
pgt anp com no 1 119 87.2% 99.9%
mlf anum body yes 1 147 84.6% 99.9%
pgf basic body yes 1 150 84.3% 99.9%
pgf anp body yes 1 164 83.1% 99.9%
mlf anum com no 1 191 80.9% 99.9%
pgf anp body no 1 200 80.2% 99.9%
pgf basic body no 1 211 79.3% 99.9%
sa - - - 2 339 70.4% 99.8%
mlf basic head yes 3 43 94.9% 99.6%
mlf char head yes 3 176 89.4% 99.6%
mlf basic rawhead yes 7 30 96.4% 99.1%
mlf twochar com yes 14 85 96.4% 98.3%
mlt basic com yes 21 36 95.6% 97.4%

Symbols are explained under Table 1.

The most notable feature of Table 2 is the dramatic drop in precision. The
top classifiers have two to three times as many false negatives as the small test.
This could be due to human error in classifying the large corpus or it might
be due to temporal smoothing — the probability of receiving legitimate mail
with spammy tokens increases as more messages accrue. Alternatively, new
spam techniques and popular spam products may have developed recently, so
a recently trained filter will have new tokens to work with which are likely to
occur in newly-arrived mail. Since a large corpus seems to increase recall while
a small recent corpus seems to increase precision, a production system might
include both, consulting one when an incoming message is on the borderline.

Another striking feature is that the character tokenizer’s best performance
gave only three false positives; the second best character/head-based perfor-
mance produced 4 false positives and 201 false negatives. Thus, with enough
training data, most legitimate messages can be identified purely based on the
distribution of characters in header fields. Since many of these fields are set
automatically in the e-mail process, it’s difficult for spammers to spoof this
information to masquerade their mail as legitimate.

With a large corpus size, the standard Näıve Bayes implementation (with
tokens either on or off on a per-file basis) produces results comparable with
Paul Graham’s implementation. A larger training set provides a more accurate
estimate of token probabilities, so the result is not as impacted by error.
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In the large training set experiment, capitalization continued to make little
difference. As in the smaller set, tokenizing punctuation improved precision a
little, and with a little work might do even better.

7 Future Work

My implementation for these experiments is written fairly inefficiently, but with
some optimization and parameter tuning it could be acceptably used to make ac-
tual filtering decisions (assuming results similar to those presented; i.e. zero one
false positive per 800 legitimate messages). Studying alternative learning algo-
rithms therefore may not be fruitful. The approach of improving performance
by adding extra features such as punctuation and header/token pairs for the
majority of other statistical approaches, which use vectors of both present and
missing features. Tuning a punctuation tokenizer seems especially promising.

In the quest to find optimal tokenizers, the PhD work of de Marcken[3] may
be helpful. He studied statistical methods for learning both vocabularies and
grammars from unsegmented data streams (both text and continuous speech).
Ideally, spam filters could evolve tokenizers at the same rate that spammers
devise ways to spoof tokenizers.

8 Conclusion

In this paper I used the Näıve Bayes algorithm to classify over 2000 pieces of
legitimate and unwanted “spam” e-mail I received. I examined the effect of
several parameters in this process including training set size and recency, algo-
rithm implementation details, feature extraction method, and message portions
examined. Most significantly, I learned that

• case sensitivity doesn’t matter much

• examining punctuation can improve precision a little; the Graham-based
algorithm (considering only the most informative tokens) outperforms
standard algorithm description, especially with small corpora. This echoes
the results obtained by McCallum and Nigam in [16]

• precision is dramatically affected by size or recency

• character frequency can perform well given sufficient training data.

My best classifier variant classifies messages with 100% legitimate recall and
92.9% legitimate precision with room for improvement — comparable to or
better than most published results.
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